Weighted $\ell_1$ Minimization for Sparse Recovery with Prior Information
نویسندگان
چکیده
In this paper we study the compressed sensing problem of recovering a sparse signal from a system of underdetermined linear equations when we have prior information about the probability of each entry of the unknown signal being nonzero. In particular, we focus on a model where the entries of the unknown vector fall into two sets, each with a different probability of being nonzero. We propose a weighted l1 minimization recovery algorithm and analyze its performance using a Grassman angle approach. We compute explicitly the relationship between the system parameters (the weights, the number of measurements, the size of the two sets, the probabilities of being non-zero) so that an iid random Gaussian measurement matrix along with weighted l1 minimization recovers almost all such sparse signals with overwhelming probability as the problem dimension increases. This allows us to compute the optimal weights. We also provide simulations to demonstrate the advantages of the method over conventional l1 optimization.
منابع مشابه
Recovery of signals by a weighted $\ell_2/\ell_1$ minimization under arbitrary prior support information
In this paper, we introduce a weighted l2/l1 minimization to recover block sparse signals with arbitrary prior support information. When partial prior support information is available, a sufficient condition based on the high order block RIP is derived to guarantee stable and robust recovery of block sparse signals via the weighted l2/l1 minimization. We then show if the accuracy of arbitrary p...
متن کاملWeighted $\ell_1$-Minimization for Sparse Recovery under Arbitrary Prior Information
Weighted l1-minimization has been studied as a technique for the reconstruction of a sparse signal from compressively sampled measurements when prior information about the signal, in the form of a support estimate, is available. In this work, we study the recovery conditions and the associated recovery guarantees of weighted l1-minimization when arbitrarily many distinct weights are permitted. ...
متن کاملAnalyzing Weighted $\ell_1$ Minimization for Sparse Recovery with Nonuniform Sparse Models\footnote{The results of this paper were presented in part at the International Symposium on Information Theory, ISIT 2009}
In this paper we introduce a nonuniform sparsity model and analyze the performance of an optimized weighted l1 minimization over that sparsity model. In particular, we focus on a model where the entries of the unknown vector fall into two sets, with entries of each set having a specific probability of being nonzero. We propose a weighted l1 minimization recovery algorithm and analyze its perfor...
متن کاملBeyond $\ell_1$-norm minimization for sparse signal recovery
Sparse signal recovery has been dominated by the basis pursuit denoise (BPDN) problem formulation for over a decade. In this paper, we propose an algorithm that outperforms BPDN in finding sparse solutions to underdetermined linear systems of equations at no additional computational cost. Our algorithm, called WSPGL1, is a modification of the spectral projected gradient for `1 minimization (SPG...
متن کاملWeighted sparse recovery with expanders
We derived the first sparse recovery guarantees for weighted l1 minimization with sparse random matrices and the class of weighted sparse signals, using a weighted versions of the null space property to derive these guarantees. These sparse matrices from expender graphs can be applied very fast and have other better computational complexities than their dense counterparts. In addition we show t...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2009